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Symbols

; pi )
A Bl O

()
40, @41, b0, ¢

coefficients of velocity distribution function for ith species

distribution function coefficients given in appendix A and
defined in reference 7 for 7th species

speed of sound, v/ARTx

distribution function coefficients defined by equation (70c) or
(D10)

mass fraction of species ¢

frozen specific heat at constant pressure of mixture,

Z%\I S Oicp,i

specific heat at constant pressure of species ¢

frozen specific heat at constant volume

multicomponent diffusion coefficient for species pair 7 and j
thermal diffusion coefficient

binary diffusion coefficient for mixture of atoms and
molecules

binary diffusion coefficient for mixture of species 7 and j

diffusion vector of jth species
total energy flux, ET yeM

energy flux from translational energy

internal energy that readily equilibrates with translational
energy

general flux of property such as mass, momentum, or energy
diffusion coefficient, pD g /(U /cp,00)
distribution function of 7th species

equilibrium (or Maxwellian) distribution function of ith
species

enthalpy of mixture, ZSI:SI Cih;

T
enthalpy of species 4, [ ¢, ;dT + Ahif 208
298 ’

heat of formation for species 7 at 298°K

thermal conductivity of mixture
Boltzmann constant

wall catalytic recombination rate constant for species ¢

v



mass flux
Mach number, Uso/aco

mass of ith species

mass of mixture or single-species gas molecule, (Eﬁ_ﬁ %) !
binary Lewis number, cppDgps/K

multicomponent Lewis number, cppDyj /K

binary Lewis number, cppl;;/K

Prandtl number, cpu/K

number of chemical species

number density of species ¢

coordinate measured normal to body in body-filled coordinate
system (appendixes C and D)

total number density, Ey___sl n;
momentum flux

pressure

partial pressure of species 7

wall heat-transfer rate or wall heat flux

universal gas constant divided by molecular weight of mix-
ture, R /W

universal gas constant

radius measured from axis of symmetry to point on body
surface

radial distance from body center (appendix E)

body nose radius of curvature (appendix D) or radius of
sphere (appendix E)

distance measured along body surface (appendix D)
temperature

free-stream velocity

velocity component along body surface (appendixes C and D)

thermal velocity vector

thermal (or peculiar) velocity of ¢th species (component of V
for species 1)

diffusion velocity

total (or molecular) velocity, vy, + V,g

bulk or mass-averaged velocity
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Subscripts:
A

e

k.2

M

q

ref

z,Y,2

2,2

nondimensional thermal velocity, (1 / %Z—%) V,f

molecular (or atomic) weight of species ¢

molecular weight of mixture

nondimensional mass-averaged velocity (, / %) Yok

coordinate parallel to body (fig. 1)
coordinate perpendicular to body (fig. 1)
coordinate parallel to body (fig. 1)
energy accommodation coefficient

body angle defined in figure D1

recombination coefficient (or, fraction of incident atoms that
recombine at surface)

ratio of frozen specific heats, cp/cy

Kronecker delta

Reynolds number parameter, (U.of/pooUco? ) 1/2

accommodation coefficient (or fraction of incident particles
that stick)

surface curvature
mean free path
viscosity of mixture

density

perturbation part of distribution function

circumferential angle (appendixes D and E)

general property of 7th species such as mass, momentum, and
energy

source term defined by equation (38)

atom

equilibrium value
coordinate indices
molecule

species index
reference quantity
component directions
normal component

tangential components
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o0 free-stream value

Superscripts:
| incident flux
T specularly reflected flux

Affixes (used both as subscripts and superscripts):

i,] species indices
8 edge of Knudsen layer
w wall

A bar over a symbol indicates a dimensionless quantity except for the definitions of E}.c and 1779
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Summary

Equations are presented for the surface-slip (or jump) values of species concentration, pressure,
velocity, and temperature in the low Reynolds number, high-altitude flight regime of a space vehicle.
These are obtained from closed-form solutions of the mass, momentum, and energy flux equations by
using the Chapman-Enskog velocity distribution function. This function represents a solution of the
Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium
multicomponent airflow, includes the finite-rate surface catalytic recombination and changes in the
internal energy during reflection from the surface. Expressions for the various slip quantities have
been obtained in a form which can readily be employed in flow-field computations. A consistent set of
equations is provided for multicomponent and binary mixtures and single-species gas. An expression
is also provided for the finite-rate species-concentration boundary condition for a multicomponent
mixture in the absence of slip.

Introduction

For an accurate prediction of the aerothermal environment of a space vehicle entering the Earth’s
atmosphere in the low Reynolds number, high-altitude flight regime (ref. 1), the multicomponent,
nonequilibrium gas chemistry, as well as the wall slip and catalysis effects, must be evaluated. Such
flow fields are of particular interest for aeroassisted orbital transfer and Space Shuttle vehicles.
This study was undertaken to obtain the boundary relations that incorporate the effects of slip,
multicomponent diffusion, wall catalyticity, and changes in internal energy of the molecules (during
reflection from the surface) for application to flow-field calculations under the general assumption of
local thermodynamic equilibrium.

Scott (ref. 2) first presented the wall boundary conditions for a multicomponent mixture with
diffusion and wall-catalyzed atom recombination. In obtaining these boundary conditions, he used a
first-order velocity distribution function at the edge of the Knudsen layer next to the wall (see fig. 1),
where the continuum model of the gas breaks down. These boundary conditions, obtained from the
kinetic theory considerations, provide solutions at the top of the Knudsen layer that would match
the solution of the Navier-Stokes equations in the bulk outer flow. Hendricks (ref. 3), using Scott’s
formulation, obtained simplified expressions for engineering applications with some corrections to
Scott’s expressions. Hendricks’ analysis, however, contained some errors in obtaining the engineering
expressions. This paper reanalyzes the wall boundary equations by using the approach of reference 2
and provides appropriate relations for the various quantities with surface slip in a form which can
readily be employed for flow-field computations. An effort has also been made to reconcile the
differences between slip expressions employed by the different researchers. The present analysis
provides a consistent formulation for the slip equations for multicomponent and binary mixtures and
single-species gas. An expression is also provided for the finite-rate species-concentration boundary
condition for a multicomponent mixture (in addition to that for a binary mixture) in the absence
of slip. This expression could readily be used in Shuttle-flow-field heating analyses, which include
effects of multicomponent diffusion such as reference 4.

The main difference (among other details) between the results contained in reference 5 and the
present work is that, in reference 5, the various internal degrees of freedom for a molecule were
considered frozen during reflection from the surface whereas they were allowed to change in the
present analysis.! Further, the results are provided in both spherical and body-oriented coordinate
systems.

Analysis

The slip conditions are taken to exist across the Knudsen layer, which is on the order of one mean
free path in thickness as sketched in figure 1. The analysis outlined herein follows the approach of

‘1 Since the assumption of local thermodynamic equilibrium is employed, only those internal energies are considered
which equilibrate readily with the translational energy.
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Fil incident flux; FiT specularly reflected flux; F,’ diffusely reflected flux.

Figure 1. Knudsen layer showing general fluxes and coordinate axes; temperature as function of normal distance is
schematically overlayed.

references 2 and 5. It is based on Shidlovskiy’s (ref. 6) assumption that the distribution function
near the wall can be described to first-order accuracy by the so-called Navier-Stokes approximation.
However, a deviation is made from the procedures of Shidlovskiy in that a Chapman-Enskog
type distribution function for a multicomponent mixture obtained by the variational method of
Hirschfelder, Curtiss, and Bird (ref. 7) is used. The Chapman-Enskog distribution function permits
an accurate accounting of diffusion. The analysis contains the following assumptions:

1. The energy and momentum accommodation coefficients (i.e., & and 8, respectively) have the same
value.

2. The fluxes of mass, momentum, and energy across the Knudsen layer are assumed constant. This
assumption is consistent with the one of negligible variation of the velocity distribution function
through the Knudsen layer.

3. The internal energy associated with the rotational and vibrational modes readily equilibrates with
translational energy.

The interaction model at the gas-solid interface, with the various fluxes sketched in figure 1, can
be mathematically stated for dissociated air as provided by the following equations.?

2 From the available experimental information, there is no indication that there is significant formation of NO on the
Shuttle or other thermal protection surfaces. For this reason, the formation of NO has been neglected in the present
model.
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For recombining atom:

FA=F4+(1-04)F +(04-14)FY (A=0, N) (1)

Obviously,
74504

For molecule gaining from corresponding atom recombination:
Fyp=Fi+ (1= 0p)Fl + 0y F +74FY (M =0y, Ny) )
For all other atoms and molecules (surface is assumed to be noncatalytié with respect to them):
F;=F} + (1-6;)F} +;F 3)

where F; denotes a convective property such as mass, momentum, or energy.

Summing over all the species gives, from equations (1), (2), and (3), the following expression for
the net flux of momentum or energy:

NS NS . NS ) N
YoF; =3 Fi 4+ (1=0)F +> 0;F (4)
=1 1=1 i=1 1=1

That is, the net flux at the outer edge of the Knudsen layer equals the incident flux, plus the specularly
reflected flux (incident minus the fraction that sticks) at the wall, plus the diffusely reflected flux
(those that accommodate to the wall) from the wall.

Each species is treated separately in the mass balance equations. Therefore, equation (1), (2), or
(3) is employed, depending on the species being considered. In equation (1), the diffusely reflected
flux consists of those atoms that are accommodated to the wall minus those that recombine. For the
molecules in equation (2), the diffusely reflected term is present along with the source term resulting
from the appropriate atoms recombining on the surface.

Various Fluxes and Distribution Functions

The interaction model of equations (1) through (4) is employed to obtain the slip boundary
equations at the gas-solid interface. Through equation (1), the net fluxes of species, momentum, and
energy at the outer edge of the Knudsen layer are equated to the difference between the incident
and reflected fluxes at the wall. These fluxes are assumed to be constant across the Knudsen layer
and are obtained from moments of the distribution function. For a convected property ¢*(V) such
as mass, momentum, or energy for the sth species, the net flux of that property normal to the wall
at the outer edge of the Knudsen layer, for example, is

E= [T [T [T ) sy atv %)

where v}, is the normal component of the molecular (or total) velocity and f%(V) is the velocity
distribution function at the edge of the Knudsen layer.

Similar integrals are obtained for the incident and reflected fluxes by integrations over appropriate
half-spaces in molecular velocity as shown through the following equations:

Incident flux:

B=[" L [T s s v ©



Specularly reflected flux:

T e v v 0

Diffusely reflected flux:
re= [ [T [ ) A v (®)
—-00 JO —00

where f7, is the Maxwellian velocity distribution function evaluated at the wall condition and Vi,
Vy, and V, are the components of the thermal velocity vector V. It may be noted that the normal
component of the macroscopic (or mass-averaged) velocity vgy at the surface is zero, so that vy Vy
in equations (5) through (8).

The velocity distribution functions used in integrals contained in relations (5) through (8) are
those for a nonuniform multicomponent mixture perturbed out of equilibrium:

Fiv) = fO W)L+ #(v)] (9)
where f (O)i(V) is the Maxwellian distribution function for the 7th species given as
(0 (7 — "im?ﬂ m; .2
1) = e o (g ) (10)
and
<I>1(V) }caalnkT B%Zﬁav;): iR Z Ol(.?) dJ (11)

Here k and £ are the dummy indices for three coordinate d1rect1ons, and the summation with index
J represents summation over all the species. The summation convention for repeated indices is used.

The coefficients Al , Bkﬁ’ and C (7) are functions of the dimensionless velocity:

T _
Wi =\l Vi (12)

and are defined as

. . . 1
Bip = bio (Wiwé - ng'25k£> (14)
i) = Dy (15)

where a;g, a;q, by, and c(J ) are constants determined from the variational problem in the first
approximation for a mlxture as given in reference 7, and 6y is the Kronecker delta such that

bpe=1 (k=1



be=0 (k#¥£)

These constants are functions of the collision integrals and are related to the transport properties.
The simplified form of these constants is provided in appendix A of this paper. More details can

be found in appendix A of reference 2 or in reference 7. The diffusion vector di in equation (11) is
related to the diffusion velocity of the jth species and is defined after neglecting the external forces

as (ref. 7):
. a n.: ns n:m., alnp
3= 2 (2 J 2 ) F
d’“-awk(ﬁ>+(ﬁ p )3% (16)

where 7 and m; are, respectively, the number density and mass of the jth species; 7 is the total
number density, 7 = Ej njip is the total mass density, p = Ej njmg; and p is the total pressure,

p = Zj ;- A simplified form for d?c is provided in appendix A.
The total or mass-averaged velocity vg;, (i.e., the kth component) appearing in equation (11) is
defined as

1 NS .
ok =; Z n]mj’l_}‘lac
J=1

where 1‘){c is the total velocity vi (= v + Vlg ) of the jth species averaged over the distribution
function, and Vlg is the thermal (or peculiar) velocity, also introduced in equation (5). The thermal
velocity Vlg of the jth species averaged over the distribution function is known as the diffusion velocity
Vi

=i [ [ [ i ey )

A simplified expression for the diffusion velocity in terms of transport properties is provided in
appendix A.

Balance and Slip Equations

Based on equations (1) through (4), the balance equations for the sth species for fluxes normal
to the surface of: (¢) the species mass M;,, (¢¢) the normal component of momentum F;,, (¢%%) the

tangential component of momentum Pz'"’ and (¢v) the energy E;, are obtained as follows:

() Species mass flux:

For a recombining atom,
Mpy=04M4 + (84— 1AMy (A=0, N) (18)
For a molecule gaining from the corresponding atom recombination,

Mgy = 0y My + 00 MYy +7aMY (M =03, Ny) (19)

For all other atoms and molecules,

M, = 0;M} + ;MY (20)




(#7) Normal momentum flux:

NS NS | NS .
Yo Py =% (2-0)P +> 4P =Py (21)
1=1 1=1 =1
(747) Tangential momentum flux:
NS NS |
2 Py =2 0Fy (22)
i=1 i=1

(tv) Energy flux:3

NS NS
By=Y Ey=Y Ep+ Y ey
1=1 1=1 )

)
Diatomic
molecules

NS T NS T
= Z ﬂiEz- ! + Z 9iE¢ W + Z Gie,fMil
=1 =1 ;

)
Diatomic
molecules

+ Z 91'8;!) Mzw (23)
)
Diatomic
molecules
where e, is the internal energy of 7th species that readily equilibrates with the translational energy
EzT under the assumption of local thermodynamic equilibrium. For example,

grotation _ _If_T_
p) m;

Further, in writing the energy flux balance of equation (23) it has been assumed that there is no
change in internal energy during specular reflection.
In obtaining equations (18) through (23) we have used the following relations:

Ml =-pmt Pl =_p!
1| di

EZ'TZ—E} Pz?]lllzo Pzﬁjzngj
Because it is assumed that the atoms are consumed at the wall by catalytic recombination in
equation (18), the net mass flux is not equal to zero, M Ay # 0. Similarly, the net mass flux is
not equal to zero, My, # 0, in equation (19). However, M;, =0, is equal to zero, in equation (20)
for the atoms and molecules for whom the surface is assumed noncatalytic.

Substituting equations (5), (6), (7), and (8) with the definition of #*(V) as mass for equations (18)
through (20), as normal component of momentum for equation (21), as tangential component of
momentum for equation (22), and as energy for equation (23), respectively, and carrying out the

3 The energy balance is based on the assumption that the various energies considered readily equilibrate with the
translational energy.
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integrations* gives equations relating the slip properties to wall properties and gradients at the edge
of Knudsen layer. All accommodation coefficients 0; are assumed to be equal to 0.

Concentration (number density) slip (obtained from mass flux balance):
n? 1 27rm T,
L =21 L \/ L ’y

where M;, and Py /p? are given by equations (B1) and (B17), respectively. Alternatively, a more
31mphﬁed expression for M;,, may be obtained from equations (34) and (35).

3

Pressure slip (obtained from the flux balance of normal component of momentum):

NS
] 0 Ovgg . Ovgr ., 9V0y 2-0 |, 0T . 1
Ps—{ 3 [M( 3z + g 2 3y s+ N k 3y Z 1 | 30 — 591

i=1
NS
0 w 4 2-40 (J) g
+§P }/ §+ —ﬂ_z n; Z c’iO dy (25)
1 7=1 s

with viscosity .
1 NS

1=

Velocity slip (obtained from the flux balance of tangential component of momentum):

NS
2—140 ov vy 1 OlnT 1
s 0z Y - 3 S~ Zas
Vg = \/E 20 s ( By + oz )s + 2 Z p; |: 9z (azo 20,21)

1=1

NS —
" Z c(J) dﬂ] ; P /%%S (26)

NS

2-0 [dvy, O 1 AT 1
s 0z Y hd S e Ty
W=\ V™5 ”3( 3y oz >3+2 lezl Bz <a’0 2““)

) NS m_—
ﬁz CJ dﬂ} /;pf- /ﬁ%s_ (27)
7=

4 The mass, momentum, and energy fluxes in terms of evaluated integrals over the distribution function are given in
appendix B.




Temperature slip:

)3/2 = |- )3/2
(2KkTs) 2{ Z + (2kTy) Z / \/_

1 dvg ov Ovg
x |1 -y T 0z _ Yy
[ t ZO( 5z T Bz 2 2y )} - (28)

Equations (24) through (28) differ from the corresponding expressions provided in reference 2 be-

cause of the differences in the interaction model employed at the gas-solid interface and typographical
eITors.

The constants a;q, a;1, b;g, and c%) (also known as the Sonine expansion coefficients) appearing
in equations (24) through (28) may now be expressed in terms of the transport properties as given in
appendix A. By using these relations along with the various flux expressions of appendix B and also
expressing d?c in terms of the gradient of mass fractions 9C; /0y as given in appendix A (by neglecting
diffusion due to pressure gradients and external forces), the following equations are obtained after
some algebraic simplifications:®
Concentration (number density) slip:

Please note that the following equation is the same as equation (24) and is unchanged:

8
]

ns
Ty (1 +1 1 M, w 27r'mZ [Tw zy
. 2nz kTw TS

S

Pressure slip:

0 v o 3’0 —
s_J)_Y 0z 0z Oy 2(2-9
P { 3{“( 5z * o2 1y )]f%—ﬁ_

S =

. /_"}.z'_.
iH 2kT

4 9 2 - 0)
-+ —pw — _ m va
2 } / 2" Z \ 2T 2kTs Cj Z mq By (29)

Velocity Slip:

— NS
Wy = \ﬁz 9[ y (Bva duy\] 1 1 o
0 { 270 Vet \ oy "oz )|, 5\ miT as 2o miviK:

=1

8

= - = .. | 9Ci 7 80y NS

— . .. S

s 1;1 AL jzz‘i X B.’II g Z mq”""‘ax Z:l n;/m; (30)
E 8 1=

5 The approximations made in the expressions for a;1 and b; are given in appendix A.

8



2 -0 oy ov 1{ 1 o}
v = \/E_____ [__/i_ 0z Oy 1
0z { 2 0 |ViT \ 9y 5 s+5 nkT 0z Z ny/miK;

J—l S

N8 NS oC; NS = ac, NS
ey v oy (5o ¥ DB L S wm
J#4

Temperature slip:

Is _ _ﬁgiﬂ_ﬁ > mgef My 72 — 8 5 mqed My,

Diatomic Diatomic
molecules molecules
1 2kTs ms s(e;-” = ef)mi F; z'y 2kT3 sz
— —0y =+ 1 cil—2+1
+4 Z m,L- mz— Cz k'Tw + 2 E t pf +
)
Diatomic
molecules
_yr2 o0 (1KoT 5 N8 My 2kTsmSC R )
0 2 p dy 41,_1 am; Z pi
= s

where the mass fraction C; and the mass of a mixture molecule 7@ are defined, respectively, as

C; = nmy
p

and

NS C. -1

m= |3

j=1""1

Equations (24), (29), (30), (31), and (32) differ from equations (23) and (25) through (28) of
reference 3. For dissociated air, the gas-surface interaction model employed in reference 3 appears
to be inconsistent. Further, the diffusion vector di appears to have been incorrectly evaluated in

reference 3. If one carries out the simplifications in equations (23), (24), and (28) of reference 3

(which contain the binary assumption) through the evaluation of % %7-) in terms of mass fraction

as given by equations (35), (36), and (39) of the same reference, erroneous results are obviously
NS 7a0.

obtained because ) (—5;1) (which is zero by definition) is contained as a factor in several of
] s

J=1
these equations.



For the first-order recombination at the surface, the following relation between the atom mass
flux M 4, and the wall number density n"ﬁ may be employed:

MAy == wA"QXmA (33)

where the minus sign indicates that the flux is in the direction opposite to the outward normal, and
the expression for the rate constant k,, 4 with diffusion and slip is (ref. 2)¢ as follows:

kTy
2Tm 4

kwa =14 (39)

Here 4 is the recombination coefficient.

For a fully catalytic wall (74 = 1), the maximum value of the rate constant k4 is limited by
the surface temperature. The reaction rate constant for a fully catalytic wall with the gas phase in
chemical equilibrium is often assumed to be infinity for the sake of simplicity.

If equation (33) is employed, the net mass flux M;, appearing in equations (24) and (32) may be
obtained from

MAy = —-kwAn%mA (A=0, N) (35a)
w A=0for M =0y

MMy:kwAnAmA (AZNfOI‘M=N2‘) (35b)

My, =0 (For all other atoms and molecules) (35¢)

Equation (24), with M;, defined by equations (35), gives the number density ratio n?/n¥. However,
to obtain n¥ from this ratio, an expression for nf is required.
The net mass flux of O and N atoms to the surface, M Ay is also equal to the rate of consumption
of these atoms at the wall from surface recombination:
Mgy ="4My, (A=0,N) (36a)
and the corresponding net mass flux of O9 and N9 molecules will be
_ ! A=0 for M =0y 36h
Mury = —14My, (AszorM=N2 (36b)

For all other species, the net mass flux to the surface may be assumed to be zero. Thus,

Miy =0 . (36¢)

6 As shown in reference 2, by neglecting slip but keeping diffusion, a slightly different form of equation (34) is obtained:

P 274 kT
wA 2—~a\ 2mmy

10



Substitution of the net and incident fluxes M;, and MZ-l from equations (B1) and (B2), respectively,
into equation (36) gives the following expression (after thermal diffusion is neglected):

NS . NS = s

D2, ?_C_ ‘90‘1 Y (37)
JFl s

J#1

which may be used to obtain n}.” Here ¢? is the source term defined as

g5 = AL maAny [2KTs (Pay (382)
AT @) VE s || ma \ P

For O9 and N9 molecules

A=0for M =09
S _ a8 38b
Vi = Y4 (A:NforM:Nz) (38b)
For all other species
PP =0 (38¢c)

Simplifications for Multicomponent Mixture
Equations (24) and (29) through (32) for multicomponent gas flows can be simplified if one makes
the following assumptions:

1. All diffusion coefficients D;; for a multicomponent gas have the same value so that D;; = D gps3°
D 4 is the same as the binary diffusion coefficient Dypy.

" If no assumption is made about D;;, equation (37) would give the following expression for (8C;/dy)s for all the
species:

NS NS — NS
9C;\ _mi s 192G maC, | % L
( By )s == 12D 5y O ) may | Tmg| ) 2o (PuCis
.7:1 q:]_ ]=1
o a7 s J#

The source term ; in this expression, however, may be simplified to yield the following expression for C§ (or n%) for
the recombining atoms only:

S 2—~yam aC m acC, Py
cy =140 _ 9 JA A =2 - e | s
A Ps VT YA s 2kTs Z J Z mgq By pjl

8 This is a somewhat stronger assumption because Dij is concentration dependent, whereas D;; is virtually independent
of composition. The multicomponent diffusion coefficient D;; is related to the binary diffusion coefficient D;; through
the following relations (ref. 7):

Dyj = Ky — (M;/M;)K

where quantities ?ij are coefficients in a matrix which is the inverse of the matrix with the following coefficients:

c ¢
K.=%i oy N~ Y i
7 Dij + J ; Mq Diq (Z 7é J )
q#i
=0 (i=17)

One can see, therefore, that by employing D4ps (which is the same as Dgps) for all the species in a multicomponent
gas mixture, considerable saving is obtained in computational effort and time without losing the general flavor of
multicomponent diffusion. This is particularly true if the dissociated air consists predominantly of nitrogen molecules
and oxygen atoms. The Shuttle entry conditions fall into this category. Simple and multicomponent diffusion gave the
same results in reference 8.
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2. The ratio of normal momentum flux to the pressure F; / p; is the same for all spe01es and equal
to that of the mixture; this also implies that the norma,l shear stress 7y, for species 7 is the same
as that for the mixture ryy.

3. The rotational and vibrational states are fully excited so that the internal energy e; for the
diatomic molecules in air may be taken as equal to 2kT'/m; at the edge of Knudsen layer. Implicit
here is the assumption that excitation of the electronic states of the atoms and molecules does
not contribute to the internal energy of the particle. This will be true for a relatively cold surface.

These assumptions retain the major effects of multicomponent fluxes on various slip quantities and
provide considerable saving in the computational effort required for the analysis of a flow problem

(refs. 2 and 8). With these simplifications, equations (24) and (29) through (32) yield the following
results:

Concentration slip:

ng 1 My, [2rm; \/T_

=914 t w

ny ( + 2nfm; kTw Ts (39)
where M;, may be obtained from equations (35) and Py/p® is given by equation (B17) with the
31mp11ﬁcat1ons mentioned earlier in this section.

Pressure slip:

P9 T2 ZaghTy "\ oz T 82 3y J|, 75 V& muwkTe

1 o7 8 ik, 8 202-9) Dipy I
kaag = m) }/{2 N ,ﬁ-—MsZr

NS —
BC2 m 0Cq
1— Rkl dnd '}
x| 54 )qu By } (40)
L g=1 s
Velocity slip:
Us _ \/E2—0[ M (0'[}0$+8’U()y +1 1 9T NS nZ-Ki :
0z 20 |ViT \ 9y 8x35ﬁxi_zlﬁmz
- 8
NS — NS
o0C; m 0C,
+n5DAMZ\/ Z+(1—C¢)Z;ﬂ—'a—xq— Z nf my; (41)
=11 s i=1
s _ Tm2—-0 1 p (Ouy, vy 11197 n; K; :
Y0z \E ] [,/—k:r(ay t 5. )|, 5\ B2 1; m VT
- 8
NS — NS
oC; m 0C,
+nsDAMZ,/—“ S+ 1—0)qu - 3 niym; (42)
/=
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Temperature slip:

Ts ﬁ Miy \/7_'(' Miy 1 Py 2kT3 ms s
—_— = —_—— —_— = —_— = —_— 1 _— "—"“C
|: n Z 7, Z mg + 2\ p’? + Z m; m; B
- i

=1 Dia.t;mic Diatomic

molecules molecules

M,

NS NS
+ 2 ( ) Z v :| / VT 0 2p 8 4 Z; @ Z m;
=1 = Diatomic
molecules s

NS —
L (,Py 2kTs s Py 2kTs Ms s 43
z( “)Zﬂ/ ( +1) Z Ty (43a)

Diatomic
molecules

or, if the internal energy is frozen during reflection from the surface (see eq. (28) of ref. 5, for
example),

NS NS
E _ _ﬁ Miy 1 Py 2kTs ms ) 2 0 ot §
Tw [ Tis Z m; + +1 C 2 P ay 4 Z

7=1
NS =
1 Py 2kTs Mg o
+3 (311s +1) Zl ey Cz] (43b)
1=

Equation (37) may also be simplified to yield an explicit expression for nf:

1 [[0C; 1 b, 1 9C
w-afedl@) ) /EEE)
vomg Oy m; \Dam /s E mq s 4
where
s ya4 1 man% [2kTs [ Pay
o A=0 for M =0y sh)
M~ 7A A= N for M = Ny
¥ =0 (For all other species) (45c)

2

It is suggested here that the concentration for the major species (for example, nitrogen) be
obtained by requiring the sum of concentrations of all the species to equal unity. It should be
mentioned that the mass of the 7th species m; is related to the molecular (or atomic) weight W;
through the relation

my; k
= 46
W, " R (46)

where k is the Boltzmann constant and R is the universal gas constant.
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Concentration Slip Boundary Condition for Fully Catalytic or Noncatalytic Surface

Equation (44) gives slip values of the concentration nf for a finite catalytic surface. For a fully
catalytic (74 = 1) surface, one generally assumes complete recombination of atoms at the surface.
There is a discrepancy in this assumption because the maximum recombination rate is limited by
the surface temperature as discussed earlier. (See the discussion following equation (34).) Thus, for
a fully catalytic surface, equation (44) should be employed with 74 = 1.

For a noncatalytic surface (74 = 0), equations (45) give %7 = 0 for all the species. Then
equation (44) becomes

NS ,—
0C; m 0C,
m; 0y /s = mg 0y ), |
which may also be written as
NS —
8CZ-> ( m BCq)
=} =-(1-0C? — 47b
(ays(n;mqays (470)
Summing the above equation over all the species gives
NS |, —
m 0C,
> (_711_ __‘l) =0 (48)
q:1 mq ay 8

for a noncatalytic surface. Therefore, equation (47a) is not an appropriate boundary condition.
However, employing equation (48) with equation (47b) yields

which may be used as the boundary condition for a noncatalytic surface with a multicomponent gas
mixture.

Simplifications for Binary Mixture

At lower altitudes (i.e., when the Reynolds number parameter €2 of reference 9 is much less than
1) with the flow in slight nonequilibrium, the derivatives of various quantities with respect to z and
z and some other higher order terms like Bvoy /0y may be dropped through an order of magnitude
analysis. (See ref. 10, for example.) Further, the dissociated air may be considered as a binary
mixture (i.e., consisting of atoms and molecules only, see ref. 9) at these altitudes. If an assumption
is also made that the internal energy of the molecules remains frozen during reflection from the
surface, equations (39) through (44) can be simplified further to the following forms.

n%y  2- [T,
A _ 2704 [fw
Pressure slip:

Bs_—{1+ 12-0_1 ( m 92) (CjKA+1_CiK >} p_o42-00ay
W 5v/r 0 nwkly \V2kT 0y )5 \ viiaz  vmag M T 0 2kT,

Concentration slip:

7, YT~ ™A (30A> (51)
W’rﬁ oy s
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Velocity slip:

e[ ()] o onm]

e 5 () ) o omome]

Temperature slip:

Ty 2kTs s ma \*?] my )3/ 2kTy AN
= = — < [1=-2{—= Cy+2 +4 | — ==
Tw mAg My mps mps my4 2ng
my 2 —0 KoT 1 my\ [2kTy7A7Y
1-2—42 —/T— —— {5 - =
) < mM)) / ( vr 0 [ ( p dy 4ﬁ ° 9mM my4  27g
= 3/2 3/2
+/ 2kTs s { [1 —2 (—mA > C% +2 (mA > }> (54a)
mg my mpm mpy
or, with frozen internal energy during surface reflection,
= 3/2
TS ZkTs mg ( mA ) s ZkTw 'YAnA
== = —2 21— —= Ci+ +
Tw mg my mps 2N
y ( “mA>\ _\/7_3 -0 |1 KaT) 5 <l_mA> 2kwayA:nf§
mps 6 |[2\pdy 4,/7 mus my 27
= 3/2 3/2
+ 2kTs s { [1 - (——mA ) ] C4 + (——mA > }) (54b)
ma my mp mp

In equations (54), n% is obtained from n’ by using equation (50).

Expression for n:

s _ Ps (1 1 1 ) 0Cy 294 kKT ny
nf =L =4 —— -
Al\m my my dy 2— 4\ 2rmy pDaps .
1 1 0C 4
/() (58, (350

which may also be written as

n5m 2 — [2rm acC
AMA s TA TMA ~s ( A)
=C Dy —£ 55b
Ps AT 2’7A kTs ay s ( )
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For a fully catalytic surface (74 = 1), equation (55b) gives appropriate value for the concentration
slip.? The relevant boundary condition for a noncatalytic surface (v4 = 0) is

as can readily be seen from equation (55b).

Comparison With Existing Expressions

For a noncatalytic surface (74 = 0), pressure and temperature slip equations (51) and (54b) are
further simplified, with the help of equation (56), to the following equations:

Pressure slip:

p’=p +5j_2 ;B(E_g§> (C:;;E4+1\/__isKM> (57)

Temperature slip (with frozen internal energy during reflection from the surface):

2 -0(K 1 9T — — 1 1 1
T. =T, = — ThsT — = — = O+ — 58
s w+ﬁ 20 (k kT ay)g/ Mmghs mi/?' m%2 A m%2 ( )

Equations (52), (563), (57), and (58) (with the noncatalytic surface assumption in equations (57) and
(568)) can be rewritten as

Velocity slip:

= Aja1= \1/—_— (\/ﬂ— a;gx) (59)

1 [t BvOz
—A1<11,. (\/ﬁ By (60)

Pressure slip:

nenen (5 (S 2/E), e

9 Sometimes in the literature C 4 is prescrlbed as zero for a fully catalytic surface. Strictly speaking, this is true only
when the Reynolds number parameter &2 (ref. 9) is approximately zero {close to the chemical equilibrium condition at
low altitudes) and the surface is highly cooled. This can easily be seen by nondimensionalizing equation (55b) in a way
sumla.r to equation (2.8d) of reference 9. Thus, the recombination rate coefficient 44 and density (as measured through
€ ) both control the recombination rate and not «y4 alone.

Temperature slip:
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where

ns\/‘ 16
(\/_— VN) ny + /Mpns 57

([mACAKA \/,C'MKM> 64 7 CAKA>+CMKM
m s 19Ty ~ 1 my mpy /s

-1
_ 1 1 1 5
o=@ L. -_L \o, + L 128 7
3/2 5] CA ———
my’  m) m3? 150m 5 — 1
o w2 — @ 2 -4
a1 =7 2T=1'2304
15 72 — 0 2 -0
b —_— ————— ————
1=\ 35— = L1750~
Br 72 — 0 2 - 4

= 2.3071

= Tm\E g

The concentration slip condition consistent with equations (59), (60), (61), and (62) is

(9‘%)3 =0 (63)

The range of values of Ay, By, and C] is as follows for a mixture of oxygen atoms and molecules and
s = 1.4 (ref. 9):

1.0039 < A; < 1.0186

0.9507 < By < 09507 { /354 | [3 Km Ka  Em

0.9056 < Cy < 0.9507

The minimum values for A; and Cy occur at ngq = 0.5p/m 4, whereas the maximum value for By
occurs at this value of n 4.

Expressions (59), (61), and (62) reduce to those obtained in reference 9'° if one assumes the
values for Ay, By, and C{ to be unity and a noncatalytic surface boundary condition as given by
equation (63). The concentration slip boundary condition provided in reference 9 is

2 — 4 [2mm acC
CS =Cv% \ / A ns A
A Age + 1A i D ( I )8 (64)

which is the same as equation (55b) obtained herein except for the additive term C’/‘{ et It s
obvious that the temperature slip boundary condition of equation (2.8c) obtained in reference 9 is

10 Gee appendix C for the dimensional form of the slip boundary conditions given in reference 9.

11 1t appears that equation (2.8d) of reference 9 for the concentration slip has been formulated for the chemical
equilibrium wall condition. Thus, when surface slip goes to zero, one obtains from equation (2.8d) the equilibrium value
for the concentration, i.e., C4q = Cﬁ’e, which would be zero for the oxygen atoms for surface temperatures of 2000 K
or less. For a highly cooled wall, the equilibrium catalytic wall condition can be approximated by a fully catalytic wall
condition where the species concentrations are set equal to the cold gas equilibrium value.
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valid, strictly speaking, for a noncatalytic surface only and is not consistent with the concentration
slip boundary condition of equation (2.8d) (reproduced here as equation (64)) obtained for a finite
catalytic wall. As a matter of fact, the velocity and temperature slip boundary conditions of
reference 9 are similar to those of reference 10,12 where these slip conditions are provided for a
perfect gas (or single-species gas).

The inconsistencies in the boundary conditions used in references 11 and 12 are similar to those
of reference 10, namely, the pressure and temperature slip values are in error by the ratio of
dimensionless thermal conductivity to the viscosity K/u. References 11 and 12 also employ the
single-species formulation for obtaining the velocity, temperature, and pressure slip values, and the
concentration slip expression in these references is the one obtained for a binary mixture (ref. 9).
The coefficients appearing in the slip equations of reference 12 may be obtained by multiplying a;,
b1, and ¢y (coeflicients of ref. 9) given here by 16/5n. The factor 16/5 is sometimes replaced by .

Simplifications for Single-Species Gas

Equations (39) through (42) and equation (43b) may be simplified for a single-species gas to the
expressions obtained in reference 6. For single species, these simplified equations may be written as
(with 74 = 0 and M;, = 0 for a single-species gas).

Density slip:

ps _ i _ Z’fﬁ[Hi T s (av(n duoz _, 9001/) }—1 (65)
pw mna¥ \ Ts 2 /RTs dz dy /s

Pressure slip:

S _ 0 -1
r_f_ 2 0 15 A oT + i\/z As Ovgy n dugy 5 vy (66)
w 0 T 0y 12V 2 /RTs \ Oz 0z oy /s

Velocity slip:
2 — 057 Ovg 300 / A oT
s _ on x ?/ al Z 2

2 — 057 Ay, O / A oT
s 4 Y ZRT {2 =
UO? 0 16)\ ( oy ) R y (T 0z ) (68)

Temperature slip:!3
-1
— == -2+l - | == 69
Tw 2( +1>[ 2+4(p5+ 128 0 Toy/), (69)

12 There appears to be some error with the form of equations (2.7c) and (2.7d) given in reference 10 if one employs
the definition from equation (2.4b) of the same reference of dimensionless heat-transfer rate ¢ in these equations. (The
Reynolds number parameter 2 is missing in eqs. (2.2b) and (2.4b) of the same reference for dimensionless shear stress
and heat transfer, respectively. These have been corrected in ref. 9.) The resulting pressure and temperature slip
expressions contain the dimensionless viscosity coefficient p rather than the dimensionless thermal conductivity K.
References 11 and 12 contain same error. See equation (2.8¢) of reference 9 for the “correct” form.

13 Since the temperature slip expression contained in reference 6 is for a gas consisting of perfectly elastic spherical
molecules, the gas does not possess any internal degree of freedom. Therefore, we have obtained the temperature slip
equation from equation (43b).

]
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where we have used the following relations between the coefficients of viscosity and thermal
conductivity and the mean free path for perfectly elastic spherical molecules (ref. 13):

u= B pAV 2 RT (70a)
16
k
K= 1451—“ (70b)

The expression for u given earlier, following equation (25), for a single-species mixture is modified to
1
u= -2—nka0 (70c)

Now, if an assumption is made that the slip values are small, equations for the density, pressure, and
temperature slip are simplified to

Density slip:

ps _ [Tw [y 5 [T X (avﬂua”f’z-za”“y ] (71)
Pw TS 24 2 VvV RTS ox 0z 8y s
Pressure slip:
s _ 0
P 2015 /20T 5 [m_As (Owg O _, ”°y> (72)
pW 0 Toy/, 2 +/RTs 0z 0y
Temperature slip:
Ts 1(Py 3 (Py 2 1/Ppy 7572 — 0 (A OT
—_ = 1 — — — e N
T 4( +) s(ps“ AV S (Tay)s (752)
or
Ts 2 — §75m (AOT 5 \/—7? As (B'UO Jdug Jvg
S 14 A0l e T z Y
Tw g 128 (T 6y>s 48V 2 RTs \ Oz + dz 2 ady )s (73b)

In obtaining equation (73b) from equation (73a), we have used P, y/p® = 1 in the second-order terms

(i-e., 2d and 3d terms on right side of eq. (73a)). Equations (67) (68), (72), and (73b) are the slip
equatlons given in references 6 and 13.

No-Slip Boundary Condition for Species Concentration

Multicomponent Mixture

The no-slip boundary condition for the species concentration without any assumptions may be
obtained from equations (44) and (45). In the absence of slip, the thickness of the Knudsen layer
shrinks to zero and the values at the top of the Knudsen layer become the wall values (see fig. 1):

R (CREACARY S N B
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with

274 1 mA’nA 2kTy
Py =- \/ . A=0
A 2 — 4T 2ny ma ( » N) (75a)
A=0for M =0y
,l/)w z_ww b
M=rA A=Nfor M =N, (75b)

PY =0 (For all other species) (75¢)

where we have neglected the higher order shear (i.e., Py/p? ~ 1).

Tt is suggested here, again, that the concentration for the major species (for example, nitrogen)
be obtained by requiring the sum of concentrations of all the species to equal unity.

For the recombining O and N atoms, equation (74) may further be simplified to

1 j= 0Cy4 m 0C,
n'4 Foa nDAM —~—+ C )Zm By (76)
w
The recombination rate constant k,, 4 in equation (76) has been defined as (ref. 2)
2 kT,
bwa= 5[5 (77)

2 ~ 4\ 2mmy

without slip and higher order shear.
For a noncatalytic wall (with v4 = 0), equation (49) gives

for all the species of a multicomponent mixture.

Binary Mixture

For a two-species mixture of atoms and molecules, equation (55b) gives

1 aC
w_ A
Ca= Fod (DAM E» )w (79)

for a surface with finite catalyticity and

for a noncatalytic surface. Equations (79) and (80) are used in reference 4.

Appendixes D and E give the slip and no-slip boundary conditions (presented in the text earlier), in
the dimensionless form for the body-fitted and spherical polar coordinates, respectively, for a planar
flow. The various integrals employed for evaluation of the net, incident, and specularly reflected
fluxes defined by equations (5), (6), and (7), respectively, are given in appendix F.
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Discussion

The present analysis provides a consistent formulation for the slip equations for multicomponent
and binary mixtures and single-species gas reacting catalytically on the surface. The differences
between the slip expressions obtained by various researchers have been reconciled, and the implication
of various assumptions (some of them inconsistent) contained in those expressions is discussed. The
slip equations have also been obtained in body-fitted and spherical polar coordinates in a form which
can readily be employed in the flow-field calculations.

Usually, the equation for pressure slip is not required as a boundary condition but is needed to
obtain the surface pressure. The temperature slip equation given herein is for a constant surface
temperature, which is provided as a boundary condition. For an adiabatic surface, however, the slip
temperature Ts may be obtained by equating the wall heat-transfer rate to zero; that is

NS
. oT 0vgg _

8

where the expression for mass flux J; is provided in appendix B and the higher order terms have
been dropped. The temperature slip equation is now required to obtain the wall temperature T,.

An expression has also been obtained for the finite-rate species-concentration boundary condition
for a multicomponent gas mixture without surface slip. This boundary condition in the literature
(ref. 4) has generally been specified by assuming the dissociated air to be a binary mixture. However,
the binary mixture formulation does not provide boundary conditions for the recombined molecules
(on the surface) such as Og and N9 in a multicomponent mixture; it gives boundary conditions only
for the recombining atoms.

To assess the importance of various terms in the general boundary conditions suggested herein,
a study is being undertaken in which the flow properties and boundary conditions would be varied
systematically. The boundary equations form a simultaneous set, which is being coupled with a
flow-field calculation procedure in the stagnation region. These equations would finally be coupled
with the viscous shock-layer code developed by Moss (ref. 14) for the detailed flow-field calculations.
The boundary equations obtained in the present work should provide a more realistic set of boundary
conditions for a multicomponent mixture for low Reynolds number slip flows as well as no-slip flows.

Concluding Remarks

The boundary slip expressions obtained in this paper are closed-form solutions of the mass,
momentum, and energy flux equations by using the Chapman-Enskog velocity distribution function.
This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation.
The analysis, obtained for nonequilibrium multicomponent airflow, includes the finite-rate surface
catalytic recombination and changes in the internal energy during reflection from the surface.
Expressions for the various slip quantities have been obtained in a form which can readily be
employed in flow-field computations. A consistent set of equations is provided for multicomponent
and binary mixtures and single-species gas. An expression is also provided for the finite-rate species-
concentration boundary condition for a multicomponent mixture in the absence of slip.

NASA Langley Research Center
Hampton, VA 23665-5225
May 17, 1985
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Appendix A

Constants Appearing in Distribution Function and Diffusion Velocity in Terms of
Transport Properties

General Expressions for Sonine Expansion Coefficients

The Sonine expansion coefficients a;g, a;1, by, and c((])) appearing in the general velocity
distribution function are found by a variational technique in which they are solutions to sets of
simultaneous equations. References 2 and 7 provide the coefficients in terms of solutions to these

sets of equations. These solutions are expressed in terms of the collision integrals Qz(.‘?’e). Reference 7

also provides the transport properties in terms of the Sonine expansion coefficients. Thus, in place
of evaluating these coefficients in terms of the collision integrals, they may be expressed in terms of
the transport properties. The various relations are

DT (6) = "7 |2 an(e) (A1)
2kT
K(©) = ——kzn,/ () (A2)

NS

w(€) = ‘kTan i0(€) (A3)

() For ay,
(i) For a;q,

(i43) For by,

(7v) For c%), in the distribution function used here, the Kernel Cl(] ) C(k) has associated Sonine

polynomial coefficients cgir’Lk) Now CZ(-i) =0 (see ref. 7), then c%) = cz((]) ) and

D;(6) = smi | oeld) () (A9
J

where DT(E), K (&), u(€), and D;;(§) are the multicomponent thermal diffusion coefficient, thermal
conduct1v1ty, coeflicient of v1scos1ty, and the multicomponent diffusion coefficient, respectxvely The
argument £ is the number of terms used in the Sonine expansion. Except for D , letting &€ = 1

gives quite good results for K, u, and D;;. When £ = 1, however, coefficients DT vanish. Hence,
in order to get the coefficient of thermal diffusion, it is necessary to take at least two terms in the
Sonine expansion (i.e., £ = 2). If the argument does not appear with a coefficient (except for a,g), it
is considered to have one term in the Sonine expansion.
The diffusion velocity for ¢th species in terms of the transport coefficients is obtained as (see
ref. 7)
_2 NS

M FY"
nyp =1 nz k

(AS)
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where the diffusion vector di for the jth species is defined after neglecting the external forces as (see
eq. (16)):

. 8 . n; n 1Mm.: aln
J Y (T R R R 4
% = oy, (ﬁ) + (ﬁ J/ > Oxy, (46)

Equation (A6) may be simplified to obtain

: NS
g P [L9G 1 9Cq

Ry \ 8 G2 24 g O (A7)

g =1

Simplified Expressions for Coefficients a;; and b,

Since a;; and by cannot be obtained directly from equations (A2) and (A3), we introduce the
following assumptions for the mixture thermal conductivity and viscosity, respectively,

NS
K~ =K 8
>3k, (48)

NS
Y = 9

Equations (A8) and (A9) are approximate forms for the more exact formula of Wilke. (See ref. 15.)
These equations imply that

NS .
i)
: n
J=1
in Wilke’s relation. This relation is approximately true for air.

Thus, with the help of equations (A2), (A3), (A8), and (A9), we may obtain the following
approximate expressions for a;; and by, respectively,

4n Ky [ my

2 n;
nibiO I~ ﬁ%”z (A12)

For accurate evaluations of a;; and b;, cumbersome expressions of the type of equation (7.4-49) of
reference 7 are required to be solved.
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Appendix B

Evaluated Expressions for Fluxes of Mass, Momentum, and Energy From Integrals
Over Velocity Distribution Function

The fluxes of mass, momentum, and energy (@.e., of a property ¢i(V)) are given in terms of

integrals over the velocity distribution function f*(V) in the section “Analysis” of the main text.
Here we give evaluated forms for these fluxes obtained from integration over the distribution functions.
-‘The various integrals needed in these evaluations are provided in appendix F.

(7) Expressions for mass flux of species:

Net
min? (T3 \/2 [ T NS |
My = —- ( m.s> az ap+n ) e (k==2,y, 2) (B1)
(3 k J =1 s
Incident /
] 1/2
L min] (2kTs bio ((Ovoz , Ovos dvgy i,
M; = NG ( ™ 1+ 6 £ + Ep 2 By s+2sz (B2)
Specularly reflected
M = -} (B3)
Diffusely reflected
2Ty \ /2
My =S ( ) (B4)

It may be mentioned that Mz-y as obtained here is similar to the mass flux J; expression of reference 16.

(#2) Correlation with Blottner’s expression (ref. 16) for mass flux:
If the thermal diffusion term is neglected in equation (B1) and substitutions are made for c(] )

and di from equations (A4) and (A7), equation (B1) may be simplified to obtain!4

oC; NS 4 ac
_ . _ g
J; = =L ]Z#Z D | =+ OW qZ_ Wy By (B5)

where W; is the molecular (or atomic) weight of the sth species and is related to the mass of the ith
species m; through the relation

my k

b B6

=% (B6)
Here k is the Boltzmann constant and R is the universal gas constant. Equation (B5) may also be
written as

NS = NS
W W oC;
i=1 I g#i

14 It may be noted here that D;; = 0. See reference 7 for details.
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or, with the introduction of the multicomponent Lewis number N Lej defined as

pepDig _ PNprDyj

N L
LC,ZJ K W
Equation (B7a) may be rewritten as
NS NS
ok W; W aC;
Jz = NPr Z: (:‘W——NLe,z] ZNLe quq) "35‘ (B7b)
j=1 q;éz
NS NS
7 W; W; aC;
Ji= 3 [ Niegy+ (1= 374 ) 3 Me zqoq] Al (B7¢)
Ner iz | W o %
NS NS
I 0C; W; W; oC;
Jiz“ NLez +Z{NL81 [ NLezg+ 1__“ ZNchqu 5 (B7d)
Ner ( % i# w g %
or
73 aC;
Ji=- Niey Abzy (B7e)
where
NS
= W; W
Abz'j = NLe,i ~ | =NLeyi gt 11—t ZNLe quq (B8)
w g#i

In general,!®
NLegj = Npeij(Ci My, My, Npg 55)

If the binary Lewis numbers N Le,ij are assumed to be the same for all the species, then
NLe,ij = Nze,ij = Nze’ij(cia Mz" Mj)

and equation (B8) for sz'j becomes

. W, W NS
A L* : *
g7t

and the mass flux (eq. (B7e)) now becomes

NS
ks 0G; 9G;
JZ——NPT Npe; By Ly Z AZJ ¥ (B10)

15 See equations (7) and (8) of reference 16.



Further, if the binary Lewis numbers N Le,ij are constant for all the species, the term

NS
5, %5
Z Ab;
(. J Oy
JF#i
is zero in equation (B10). Therefore,
NS 9C.: NS W W NS aC.:
J _ ) ) J
Z NLC,i a—y = Z —W_—ZNEC’U + (1 - —Wl> E NZc,iqu —g-y— (Blla)
J# JF# 17 q#d
or ’
NS NS . -1
_ W o W; " 0G5 | (9G;
J#i 9F1

Thus, equation (B10) gives the mass flux due to concentration gradients only with Ab;"j and N Lei
defined by equations (B9) and (B11b), respectively.

To utilize equations (B9) and (B11b), Ny, . j is still to be evaluated through complex matrix
inversions (ref. 16). If we now make a little stronger assumption such that Ny eif = Nieam = Nie
(same for all the species), we obtain a much simpler expression for Ab;fj, and equation (B11b) becomes

-1 NS
e W o (29T ARG
NLei = NLe % -(1-G) (‘5;) ;L;z (1 Wj- By (B12a)

or

_ w; ‘ ; %Y
NLe,i =Nre “:W”: + (1 - Cz) (—— Z W, dy (B12b)

Similarly the expression for sz‘j may be obtained from equation (B9) as

— W W
Abjj = Npeg— NLe [—_W-_- (1 - -W—;> (1- CZ-)] (B13)
It may be noted that for 2% = 0, the term Ny,; 2% in equation (B10) vanishes and equa-

Yy _87 = Y Ley Ty q q
tion (B11b) or (B12b) is not required. Further, employing a constant value for the Lewis number
Nre (: E—N—%DAM> , does not imply that N Lei has a constant value.

It should be pointed out here that for the case when N ;; is the same for all the species, we
have used the condition

NS 9
Z'— * J
J#1

(and not just Kb:-‘k = 0 as employed in ref. 16) to obtain equation (B11b) for Ny, ;. The present
formulation appears to provide a more consistent expression for N Le,i:
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Finally, equations (B10), (B12b), and (B13) for a binary (two-species) mixture give

b oC;
J; = ———Np, —

1 N Pr Le ay

which is Fick’s law for mass flux
Npei=NLe
(71¢7) Expressions for normal momentum flux:

Net

bio (Ovog , Fvoz BUOZ/

1
Fuy [ T3 3 ( oz + 0z dy

Piy = pf [1 + Téy]s

where T]f: ¢ represents terms in the stress tensor for the sth species.

Incident and specularly reflected

| _pl . s|L, big (Ovg , dvos ., Py
sz PZ?/ Z[2+6(8x+az 263/

= NS
1 0lnT ( 1 n 4) 4
T =5 (%o~ ‘%1) R~ E  Ci0 9y

8

Diffusely reflected

1

w . w

¥ 1y 2pi
(1v) Expressions for tangential momentum flux:

Net

L __pl 1 s _=big [Fvgz , 9oy
Pix_—Pia:—:/_%pi[_wO“’ 7r4 <8y N

1InT
+§ 9z (azo a“) _—— Z C(])d]:|

S

(B14)

(B15)

(B16)

(B17a)

(B17b)

(B18)

(B19)

(B20)

(B21)

(B22)
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! t_ 1 ¢ big {Ovo , Ovoy
Pz‘z——Piz“ﬁpz‘ [_“’Oz - 7"—2— (’5&"'*'"5;
— NS

10lnT 1 n ) .5
T30z (“i" B 5‘“’“) P> cz('c’))d%]
J=1 s

Diffusely reflected

Pz?g: = Pz-uz’ =0
(v) Expressions for energy flux:
Net
. — 52KTs [ming (%T\Y2omT (k=2 4, 2)
L m; 2 m; 8z, ik s =%y
. 5 (kT
Eig =Gk + 5 (E) My,
where

o _ (B OT
Gk = n Oz /),

Incident and specularly reflected

13 3/2 : 0
L gl ™M (2T big (dvog | Ovoz _, Ovoy\] L 1.
B =5 =57 U e o T T2y )|, T2t

Diffusely reflected
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Appendix C

Slip Boundary Conditions Given by Davis for Binaiy Mixture

In this appendix, the dimensional form of the slip boundary conditions obtained by Davis (refs. 9
and 10) is provided for the purpose of comparison with the slip expressions obtained in the main
text for a binary mixture.

The dimensionless form of the surface slip conditions provided in references 9 and 10 are

Concentration slip (ref. 9):16

s _ w £2 Wy 2 - 74 (Fp)s aCA ,
Cqa=C% .+ 1/2W o P \/ B ), (C1)

Velocity slip (ref. 9):

2 @ D ou
m = e, B0 (21) (©2)
Pressure slip (ref. 10):'7
pS p'w lTs ps an s ( )
Temperature slip (ref. 9):
I Ks [ps (0T
Ts= +e2c —e (—:) C4
® e 1 Ps \| Ps \ O/ ¢ (C4)

With the help of the nondimensionalizing quantities given in references 9 and 10, the following
dimensional forms of equations (C1) through (C4) are obtained:

Concentration slip:

2—94 [2mmy 0C 4
s _ oW Ch
Ca=Chet o\ T, \PAM Bpx ) (C5)
Velocity slip:
1  JOu
= C6
- a 4/ kTs (n\/ (?'n. ) ( )
Pressure slip:
A-1 m oT )
=pw-+b — | K — c7
Ps = Pu 1( " )s kTs ( on* /s (©7)

Temperature slip:

N

16 Yiere the dimensionless quantities are denoted with a bar over the symbol. See appendix D for details of
nondimensionalization and the coordinate system.
17 For the reasons explained in the main text, we have employed K in place of jz in this expression.
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where n* is the coordinate normal to the surface (see fig. D1), and 7 and 77 are the number density
and mass of a mixture molecule, respectively. The constants ay, b1, and ¢y are defined as

St [m2—4 2—46

15 [72-9 20
by = E\/%T = 11750~

7om [w2—0 2—46
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Appendix D
Slip Conditions in Body-Oriented Coordinate System

In this appendix, we obtain the slip conditions for an axisymmetric body in the body-oriented
coordinate (s*,n*) system. The coordinate configuration for such a system is given in figure D1. The
equations of this appendix contain simplifications similar to those given in the section “Simplifications
for Multicomponent Mixture” in the main text. By employing the metric coefficients (ref. 17) of
hi = 1+ n*k and hg = 1, equations (39) through (45) give the following slip equations in the
body-oriented coordinate system.

~— Body axis

Figure D1. Coordinate configuration for body that is symmetric about its axis.

n? 1M 27rm /Tw
N W {
;" (l + Zn mZ kTy ) Ts (D1)

where (from egs. (35)) we define M;, as

Concentration slip:

3

Myy = -—kwA’n%mA (A=0, N) (D2a)
. _ A=0 for M = Oy (D)
My = FwATATRA A=N for M =N,
My =0 (For all other atoms and molecules) (D2¢)

Pressure slip:

I L du 9w\l ,202-9)( 1 oT
Ps = 3 s 1+ n*g ds* on*J)ls 5 V2kT On*

NS

niK; 0 w 0 2(2-6) Dam
5T ) <5 13-
NS —
oC: m 0C
XZ\/—[ Z+(1—,Ci)§@anf]s} (D3)
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Velocity slip:

w= {555 [
)

Bu_ KU + 1 ﬂ
on* 14+n*k s

14 n*k 0s*

oT

1 1 NS K NS
el = Dl Vol LT VD DRV
=1 =1

1
5
NS —
ac; w1 80,
|:1+n*/c83* +(1-C) qA:l mq 9s* }

8

8 [
gl+n*k Os* Z AL (D4)
3 1=1
Temperature slip:
= [—= Z - = Z —=+s|—5+1
Tw Ns =1 m, Ns : m, 2 pS
Diatomic
molecules
" 2Ty s oo, L(Py )y [Tyl /] o2t
Z; m; m; *  2\p’ ; m; m; * A
Diatomic B
molecules
LK 0T 5 A My 1 My
2p on* 4i§=:1ﬁmz- n Ez: m;
Diatomic
molecules s
1(.P \S [T, 7, ., 1(P %Ts 75 s
+o(35+1 > TZ‘ECHE F+1 Y m E‘Ci (Ds5)
1=1 ]

Diatomic
molecules

If the internal energy (comprising rotational and vibrational energies in this case) is considered frozen
during reflection from the surface, the following form of the temperature slip equation is obtained
(see eq. (28) of ref. 5):

my

N
I |7 Yoy 1 (B
Tw =1

C|L(EoTY _5 3
2 \ p On* 42

=1

Equation for nf
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-8 oo ), 60 /5 )

)z

BT, s ] / { R

2kTs ms

0.3} (08

(D7)
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where

e () wem o
s A=0for M =09

Y= (A—--NforM:Nz) (D8b)
¥ =0 (For all other species) (D8c)

P,
In equations (D1), (D5), (D6), and (D8a), the ratio p—g is defined as

Py by 1 ou ov
p—s—[”@:(“——wn*ma—ﬁ _2%?>L (D9)

and by is related to viscosity u through the relation
1-
= inkaO (D10)
which has been obtained from equation (A3) by assuming b, to be the same (bg) for all the species.

Equations (D1) through (D8) may now be nondimensionalized by using the following relations
(refs. 9 and 14):

4= U 5= v T = T T
Uso Uso U§o /¢p,00 Tiet
- p - _ P - H u
D= p=— b= = —
PoolUZ, Poo H(Tref) Mot
- Cp > h - k.-
Cp = h = — ]{: et _&Z.
P Cp,oo Ugo we Uso
K K 5= 5 A
= TD i n = -——vo
Cp,00Href N N
E=kry R = : F Miy
N 4 n¥m;Uso
s = Y; -
maDapm /TN kwa = 52
%)

where 7y is the body nose radius of curvature, Tyt = UZ,/cp,00, and pirer = u(U/cpoo)- If
the nondimensional quantities as defined here are used, the following equations are obtained from

equations (D1) through (D8):

Concentration slip:

c: p R W, T /T P
= 2’;_”’ (1 + 5 Mool 27%0_- °°) - / o (D11)
; 8

1
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where

Mgy = —kya (A=0, N) (D12a)
_ _cv A=0for M =09

= ZA D12b

Mumy =Fuagi (A:NfoerNz) (D12b)

Mz-y =0 (For all other atoms and molecules) (D12¢)

Pressure slip:

Ne = N ...52 2— 1 6_11._2212
Ps = Puw 3P \1T¥nr 05 on)],

) 2T, ot TsW oo (1 8T>
OO(NP’I‘)S ’—YOOTOOWS T on
3/2
858 _i2"—0 2(NL6)8MOO
) CZ’%} /{1 VE 0 (Npos
} (D13)

NS =
ooToo fs Wi (9C 1 _c. W 9Cq
8 {:Hﬁ-i_(l C’);Wq on
- 8

+
o
(%)
| me— |
ot
DO
w
<7;
/"\
1~zl

where we have assumed that Np, ~ Np,; and

Velocity slip:

s =€2M?oll,3 1 \/7?2—0 ’—?ooToo Q"l:ﬁ _ k’a_- + 1__2’(:1
Ps NS 0 2T, sTs \OR 1+4+08K 1+ 7k 03
E C: ref s
; I3

W
1=1 WZ S
- 3/2

+1 1 ( 2 ) (i 1 3_T> ik WS /Osu'f (NLe)s

5 Mo(Npp)s \7—1), \T 1+ 7k 03 s & w; MOO(NPT)S

NS NS =

w; 1 0GC; W 1 0Cg
x?_-; Ws ‘:l-l—ﬁk 93 (-0 Wgl+ak 05 } (D14)
8
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Temperature slip:

Ts T Pw = w—W_:g — st 1 (Py )
Tw \/;psps = K g * ; e 1 2\p°
- Diatomi
molecules

RN AR AR BBl

o \Wi ' zz: Wi ' 2.0

B Diatomic

L molecules
i (), 520), BB (), 5o

2’700M (NPT) ’7 1 ] TOO WS on 3 4 f)s/—’s

N P _ foeeood

— el M CPl—|+-(3-2+1
;1 VVz Psps ; W Wy 4\ p¢
Diatomic
molecules
NS 3/2 3/2
Ws s . 1 Py W s
P~ =+ 1 — Cs D1

xiz—:l(wi> OZ+2(193+ 2 w; g (B13)

a Diatomic

molecules

or, with frozen internal energy during reflection from surface,

[ \ﬁ\/ﬁ ot 5 (1)
/
xZ( )3 20{'9 /{ \/;2 [ : [2'\/00Mgo(;\7pr)s (

SR

YEET:
s\7—1)5Too V Ps

?

= _ NS- &5
oT 5 Ws
x__°°(_> -2t M;,CP =2
Ws \00 /s 4+/Psbs ; W Wy
1/, Py Ws S D16

=

Equation for n:

s - ™ _ 9CG;  Wag WBCQ A=0fori=0
= Ps “1_*_(877-}_Wi¢Z s Z Wq 0n A =N for i =Ny (b17)
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where

Po= NVA a1 [ Weoly
mADflM 2—v4e2Moo 27 Yoo W g Too

v (), (5), (5
X —2 £ k] s =
78 7 A=0 for M =09 Digh
__ 18
M A A=N for M =Ny (D18b)
{bf =0 (For all other species) (D18c)
Py _Py_, 20T (;": e?‘Mgogi( 1 _du_, é‘i> (D19a)
p®  p° 3 T \pT )/, Woo \1+7E 03 on
ke — -2 — D19b
P’ 1+3193 1+ nk 93 07 ) o (D19b)
and .
W, = m; R
k
Reynolds number parameter:
g2 — _ Href
pooUcor vy
Prandt]l number: eplt
Ner="g

Lewis number:

€ K
Mach number: U
Moo = -2
ao0

Recombination rate constant:

kA = TA WOOTSTref __Tw
w Moo 27["'—700WAT00 TSTI'Ef

For a noncatalytic surface (y4 = ky4 = 0), equations (D18) give 1/)8 = 0 for all species. For this
case, equation (D17) becomes

( > ~(1-c9) Z (% %%) (D20)

Equation (D20), similar to equation (47b), gives
oC;
%% D21
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which may be employed as the boundary condition for a noncatalytic surface with a multicomponent
gas mixture (with the binary assumption for diffusion coefficients). For a fully catalytic surface,
employing 74 = 1 and using equations (D18) in equation (D17) would yield the appropriate
concentration slip.

If the multicomponent diffusion coefficients are retained without the binary assumption, the
underlined terms in equation (D13) are to be replaced by

Z NLe A7 BC C’ Z w BCq
j¢i s

and the underlined terms in equation (D14) are to be replaced by

Npeig (1 9C R 106
ZNL‘g 1+ AR 0% J;Wq(l-mk')aé

where the multicomponent Lewis number Ny ;; is defined as

pCpDij
Nieij = K

Simplifications for a Binary Mixture

When all the species in a gas mixture can be considered as atoms and molecules only (ref. 9),
equations (D11) through (D18) may be further simplified. With the assumption of Py/p®
equations (D11) through (D18) for a binary mixture yield

Concentration slip:

Ci_mw2-14 [Tw (D22)
CY ps 2 Ts

~ 2-0 &2 1 [p (BT
e = )
3/2 3/2
W _ w _
x (ﬂ) [Cjui + (ﬁ) (1 —Cj)ufw] (D23)

where we have used the following equation of state

Pressure slip:

s 1 TSTI’ef Woo

bl

(D24)

s M2 AooToo Ws

)

and neglected the higher order shear terms as well as diffusion terms.
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Velocity slip:

_ 2 0 2 s W Voo Bu Ku )
— D25
Ug — ,—psps ( 97 1 — s ( )

where we have again employed the equation of state (eq. (D24)) and neglected higher order shear,
conduction, and diffusion terms. In obtaining equation (D25), we have also used the following
approximation:

[Ci(WM—WAHWA] 1z N
Cy (VW = VWa) + VW4

For the equation to be more exact, one may keep this factor in equation (D25).

X:‘:

Temperature slip:

T3=

— 1 [7 5 29-0 & gy (8T
Tw+ - ( > — | —
w 2 2X1 -1 9 (NPr)S v/ DPspPs on g

cY¥
1- 1[2 0 Pukwa Cd (D26)
4 \/psps CS +1
where
XL = [CaAWp = Wa) + Wyl
Cawi? —aw??) 4 aw?/?

and % < x1 £ 1for 0 £ Cy <1 and diatomic molecules (Wps = 2W4). In obtaining equation (D26),
we have employed the equation of state (eq. (D24)) and Wy = 2W 4.
With frozen internal energy during reflection from the surface, the temperature slip equation

becomes
= |l= 1 o 2-0 € ps (0T
fa= |t +“\[ ( ) Vpsps \on
8 [ w 2 2X2 -1 P 0 (NP'r)S DspPs on s
T puwkya [ C4 \=
1/ = — T
\/;X2 VPsPs (Oj+1 v
— 0%, app CY
1—5\/EX22 O yab 4 (D27)
4V 2 8 /Dsps CA-l—l
where

[CaWps —Wa) + W43/
Oy (Wf{,_{z — Wiﬂ) + w2

For diatomic molecules (Wjys = 2Wy4), xo may be taken as unity for 0 < C4 < 1. Equation (D27)
employs Wps = 2W 4.

CA—2 YA g2 (NL6> (E) _Tw (80A> (D28)
2 kANPrspsTSTref aﬁs

Equation for C :Z:

38



Equation (D28), for a noncatalytic surface with y4 = k4 = 0, gives
0Cy :

whereas using ¥4 = 1 in equation (D28) and in the expression for k4,

7. TA ; WooTw
k =

would yield the appropriate concentration slip for a fully catalytic surface.
With the following (somewhat inconsistent) assumptions, equations (D23), (D25), (D27), and
(D28) may be simplified to those obtained in reference 9 and employed in reference 12:

(z) In pressure slip equation (D23), Np, = 1 is employed along with approximations
4( 7
2(2) ~3
(+5),

w _ w _ _
(W;) [Ci“i““(‘v‘vﬁ‘) ‘1“’3)“34]““8

(¢17) In velocity slip equation (D25), the following assumption is made for the mixture molecular
weights

and

NI

—> ~ 1
Ws
(1%7) In temperature slip equation (D27), an assumption is made that the surface is noncatalytic
so that k4 = 0. In addition, Prandtl number Np, is taken as unity, and it is assumed that

1 ~ 15
2 (‘1 - 1>s o8
(4v) No assumption is required in the concentration slip equation (D28). But it may not be
appropriate to employ (ref. 12) this equation for all the species of a multicomponent mixture. This
equation is applicable to concentration slip of recombining atoms only in a binary (two-species)
mixture (ref. 9) of atoms and molecules.

No equation has been obtained in reference 9 or 12 to correspond to equation (D22) to obtain
wall values of the species concentration (C%) from the values at the edge of the Knudsen layer (C%).

Slip Expressions For Single-Species Gas
For a single-species gas (74 = 0), the following slip expressions are obtained:

Density slip:

Ps _ [Iw (D31)

2—-0 52 s ﬁs(@T)
=1 [— | == D32
1 ) s 0 (Npp)sTs\V ps \OR 8 ( )

Pressure slip:

||~

4
o
Ps =Pw 5@(7



Velocity slip:

_ [r2-04 ps (0  Eu :
“=\2T8 © Voors (an m) (D33)
Temperature slip (for a gas consisting of molecules only (i.e., diatomic perfect gas)):
— -~ 1 [t( 7 2-9 & g (AT _
Ts=T +—\/j(_ > (= =9/7 D34a
8 w 4 9 q— 1 s 9 (NPT)S r—“—‘psps on s (’73 / ) ( )

where we have used x; = 1 and assumed that the diatomic molecules possess full rotational as well
as vibrational degrees of freedom at the edge of the Knudsen layer, implying 45 = 9/7. Generally
this would be true due to the high temperatures at the Knudsen layer edge. However, for perfect air,
oo is generally taken as 7/5 with the excitation of only the rotational degree of freedom. For such
an analysis, therefore, 45 would also be equal to 7/5. In this case (with only the rotational degree of
freedom excited), equation (D34a) would be modified to

= = 1 /n '_;/ 2—46 52 ﬂs GT _
Ts=T +—\/:(_ ) — | =7/5 D34b
5 YT3Va2\5-1 s 0 (Npy)svpsps \ 00/ (% = 7/5) ( )
With frozen internal energy during reflection from the surface or for a monoatomic gas, we obtain
= = 1 [r( 7 2—0 &2 Bs (0T
Ts=Ty+ —\/: (_ ) — | — D35
Y2V 2\3-1), 0 (Npy)svBsps \O7/ (D35)

where 7 = 7/5 for perfect air, and 45 = 5/3 for a monoatomic gas. Equations (D32), (D33), and
(D35) are the ones employed in references 9 and 12 with Np, = 1.

No-Slip Species Concentration Boundary Condition

Multicomponent mixture. The no-slip boundary condition may be obtained from equations (D17)
and (D18). In the absence of slip, the thickness of the Knudsen layer shrinks to almost zero, and the
values at the top of the Knudsen layer become the wall values (see fig. 1):

9c; W W oC A=Ofor M=0
w _ 1, YA q 2
C 1+(a- + ‘pZ) Z (Wq an) (A:NforM=N2> (D36)

where

) 294 1 \/ﬂﬁw (NPr> (P>
v Ww 2\ cw A=0,N) (D37a
L Sl V4 €2 Moo \| 2790cWaToo Wa \NLe )y \i ), 2 ( ) o

P A=0for M =0, —-—
M= A A=Nfor M =N,
P =0 (For all other species) (D37c)

and we have neglected the higher order shear (i.e., Py/p* ~ 1).
For the recombining O and N atoms, equation (D17) may also be written as

ou - acA %Sj"acq Z W 8C, +1‘chWw (NP,) (
W, 0 L\ Wy on 2 Wa \Nro/w

(D38)

=t

).
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The recombination rate constant k4 in equations (D37a) and (D38) has been defined as (ref. 2)

S 2 1| WeoTw
Fud = 2 — 94 Moo | 27%00W g To (D39)

without slip and higher order shear.
For a noncatalytic wall (with v4 = k,,4 = 0), equation (D21) gives

(%%)w —0 (D40)

for all the species of a multicomponent mixture with the binary assumption about the diffusion
coefficients.

Binary mixture. For a two-species mixture of atoms and molecules, equation (D28) gives

2 (N 7 aC
3£ 38,005
A kwa \NpPr/w \P/w on )y ( )

which may also be obtained from equation (D38) for a surface with finite catalyticity. In equa-
tion (D41), k,, 4 is again obtained from equation (D39). For a noncatalytic surface with k;,4 = 0,

equation (D41) gives
(?—%) =0 (D42)
on )

Equations (D41) and (D42) are obtained in reference 4. However, in reference 4, equation (D30) is
employed in place of equation (D39) for obtaining the reaction rate constant k wA- As obtained in
reference 2, equation (D30) is more appropriate when slip and higher order shear are included in the
flow-field analysis (e.g., under rarefied or low density conditions).

If k,, 4 is substituted from equation (D39) into equation (D41), we may also obtain

where we have used the following equation of state:

p 1 Ty, W
e Y oo (D44)
Pw  M& YooToo Wy,

Equation (D43) compares with the corresponding equation of reference 9, if one keeps in mind
that the diffusion coefficient Fpy (of ref. 9) in the absence of slip is related to the present variables

by the relation
N
b Y Np, w

It may be seen from equation (D41) or (D43) that the gradient (0C4/0n)q is governed by the
ratio k4 /€2 or ~ A /€2. For surfaces which are almost noncatalytic, this ratio would be of the order
of 1 for large values of the Reynolds number parameter (1/€2). This would imply that (8C 4/07)w
is not necessarily zero for such a surface if €2 ~ 0. In addition, equations (D41) and (D43) also imply

that regardless of the surface catalytic activity, the higher density conditions (smaller values of 52)
would promote larger values of the concentration gradient at the surface.
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Appendix E

Slip Conditions in Spherical Coordinate System |

For analyzing the flow in the stagnation region of a body,

it is convenient to use the spherical

polar coordinates (r,¢) for the two-dimensional flow. (See fig. E1.) The following relations exist
between the spherical polar and the body-oriented (s*,n*) coordinates over the spherical portion of

a body:
rsing = R* +n*cos B )
r=ry+n*=ry1+n'k)
1
K= — > - (EY)
L
TNO = s*
ﬂ =90 - ¢ J
or, in the nondimensional form,
Fsing = R + ficos ¢ )
FT=Ffy+a=1+n
E=1
> (E2)
$=3
OF = 0n
0¢ = 03 ]

Figure E1. Spherical coordinate configuration.



By using the relations given by equation (E2) in equations (D11) through (D19), we can obtain
the slip equations in the spherical polar coordinates for a multicomponent mixture. Once again,
these equations employ the simplifications given in the section “Simplifications for Multicomponent

Mixture” in the main test.

Concentration slip:

C? I7 1 — W; T T P
i oPw “Moo M-\ |2 el v y 1
C;w 2 [_)3 (1 -+ 2Moo 7y 7(")’00 Ts +

where

MAy = ~kyA (A=0, N)
— - A=0forM =0
Mpry = kya (24‘> 2
C M/ w A=Nfor M = N2
M =0 (For all other atoms and molecules)

Pressure slip:
_ _ 10 0%
e {222
S

W ERSTERER Y Y )
57 6 ¥~1) s Moo(Npy)s ’_)’ooToo:W;s T or

3/2
- B 4 2—40 (Nre)s [ AooToo Bis
X cins 1——2"22) Le = =
Z( ) “H/ { V0 MO WNp)s || M T

Bl o og )

Velocity slip:

_ 2Moolls 2 - ooToo ou u
et o/ ) (R G
Ay (1) (B2 3 () ol
700/ s g]MOO(NPT)S 7 (T7'3¢ W; s
NS NS
_ (Npe)s dC; W dCq
s Z [ Z+(1 C)ZWT ¢] }

(E3)

(E4a)
(E4b)

(E4c)

(E5)

(E6)
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Temperature slip:

_ NS = ==
Ts T Pw Ws Ws
Z8 - T _Pw_ cwirs M, Ccrs
Tu { 2\/107"(2 ‘wtoL yW)
Diatomic
molecules
NS /= A 3/2 = \ 3/2
1 [Py Ws s Ws 8 T
+§(‘5§+1> [;(W) Ci+ ; W: CZ V3
Diatomic
molecules
20| ¢ 1 (u) ( 5 ) Tyt [Bs Woo (BT>
X = 5 oy — T Ee= Ta—
0 2'700 MOO(NPT)S' p s \7— 1 8 TOO Ds Ws or 8
5w DS W p w
w i s w 7 s
- = M, C¥_—_= - M, C¥_=
Diatomic
molecules
NS /3 \3/2 3/2
+4(3 s+1>; (Wz> Ci+2(ps+1 XZ: W, C; (E7)
- Diatomic
molecules
or, with frozen internal energy during reflection from surface,
Ts T pw WS 1 (P?/ >
Z8 === M; — + =41
Ty l 2 \/T-TPS Z zy z 2\p?
Ws 3/203 _\/52—0 €2 1 (E) ( 8 ) Tyet
XZ t 2 40 2’")!ooM§o(Np,.),g p/s\71—1)5 T
Ps or 5 Puw M ( & + 1)
“V'5s (0T> 4\/?3/’32 WO W p°
5 ) ol (€8)
’ 9C; Wy @ (W 90, A=0Ofors= O2) (E9)
Ci=1+(37_“+ﬁ/7¢i)s qZ: Wq Br . A:Nforq,'—_—Nz
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where

95 = — TA 1 WooTs ﬁ/:s
A 2 — 74 €2 Moo Y 27500W 4T00o W4

wie), (2), )
x (==t = ~—=+1)C5 A=0, N E10
(NLe s \B/s \p? 4 ( ) (E102)
g A=0for M =0y —_—
M= T4 A=N for M =Ny ,
% =0 (For all other species) (E10c)
and _ ) _ _ )
Py _ Py, 2700700 (_L) Ws e2p2 (_—aﬂ—2 %ﬁ) (E11)
Ps  DPs 3 Tret \PT/)sWeo 7 0¢ 7/

In obtaining these various equations, the following form of the equation of state has been employed:

B TsT.t W
ps L “oref oo (E12)
pS Moo ’-YOOTOO WIS

Similar to Appendix D, equations (E3) through (E11) may further be simplified for a binary
mixture and for a single-species gas.



Appendix F

Integrals Required for Obtaining Various Fluxes

In order to obtain the normal fluxes of mass, momentum, and energy, it is necessary to evaluate
various integrals over the velocity space of the distribution function. These integrals involve terms
that are various velocity moments of the distribution function. The integrals are provided for the
net, incident, and specularly reflected fluxes. These integrals are basically the same as those provided
in reference 2 except for some corrections and additions.

Integrals Over Entire Velocity Space (for Net Quantities)

[0, 4] 0 (6.9) 2
/ / / Wy exp(-W2) &®W =0
-0 J =00 J—00

o0 [¢ o] [o.¢]
/ / / WyW; exp(-W?2) d®W =0 (i # y)
_1 3/ -
——'2‘7T/ (t=1y)

o0 o0 oo 9
/ / / WyW2 exp(—W*#) dBW =0
—00 J 0 J—00

oo 0 o0 2
/ / / WyW,W; exp(-W?) d®W =0
=00 J =00 J—00

o0 o0 o0
/ / f Wy W;W? exp(-W?) d®W =0 (i #y)
—00 J~00 J =00
_ 9 _3/2 L
= 2n/ (i=y)
/oo /oo /oo Wy2Wi2 exp(—Wz) W = %7!‘3/2 (t#£y)
-0 J =00 J —00
o0 o0 o0
/ / / WIW,W; exp(-W?) d*W =0 (G # §)
—00 J—00 J —00 :

o0 o0 o0
/ / / W, exp(-W?2) d®w = -Zw?’/?
—00 J =00 J =00
o0 o0 oo
/ / / WaW,W? exp(-W2)d*W =0
—00 J—00 J—00
oo x0 0
/ / / WAW,W? exp(-W?) dW =0
—00 J =00 J —00
oo o0 0 9 9
/ / / WyW,W;W? exp(-W?) d*W =0
-0 J =00 J =00
/ / / WyW* exp(-W?) d3w =0
=00 J —00 J —O0
R B 4 2\ 13
/ / / WyW;W* exp(-W?2) d3W =0 (i # y)
—00 J ~00 J—00
35 .
= —8—7r3/ 2 (t=1y)
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Integrals Over Lower Half of Velocity Space (for Incident Quantities)

oo 0 o0
Lo L Lo
—0 J—00J—00
oo 0 00
Lo Lo L
—00 J —o0 J—0

oo 0 00 9
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—00 J—00 J—00
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oo 0 00 9
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o0 o0 o0
/ / / WyW”W,W2
—00J0 —00

00 OO OO
Loy Lo
—00 J0O —00
o0 00 OO

/ / / Wy W;w4
—00 J0 —00

exp(-W?) d®W = 72_r
exp(—W2) d3W =0
exp(-W?2) d3W = —~i—7r3/2
exp(—~W2) BW =1

exp(-W?2) dw =0

ICHE O

exp(—Wz) 3w =
exp(-W?) d°W =0
exp(-W?2) d3W =0
exp(-W?2) d3W = —gﬂ3/2
exp(—Wz) d3W =0
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exp(—W?2) d3w = 5
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Integrals Over Upper Half of Velocity Space (for Specularly Reflected Quantities)

(i #y)

(¢ #7)
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(t#y)

(t#7,iorj#y)
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(6.¢) o0 o0
/ / / Wy (—Wy)W* exp(-W2) d3W = 35 .3/2
—00J0 J—o0 16

The term (—Wy) appearing in the integrals emphasizes that the sign of the thermal velocity
component normal to the surface Vy (and consequently that of Wy) changes in the distribu-

tion function fgt upon reflection from the surface. This implies that the distribution function
13 (Ve Vs Vi) = S (Vae, =V, Va).
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